Finding the Shortest Path
Dijkstra's Algorithm

A.Gerdelan <gerdela@scss.tcd.ie>

mailto:gerdela@scss.tcd.ie

Dijkstra's Algorithm

~1959 - Edsger Dijkstra
e a founder of computer science as an academic field
e many contributions
find the shortest path through a weighted network (graph)

fastest known graph search (asymptotically)

e original - O(V2) -V Is vertices

* 1984 - using a Fibonacci Heap - O(E + V log V) - E is edges
each node updated shortest known distance info

has some similarities to breadth-first search

. label each vertex

The A\gorithm
. tentative (white circles) ‘\ 3‘ Y

» distance infinity

. mark start vertex as ‘ / ‘ /

- permanent (black circles)

* make it the current vertex (arrow)

. calculate distance from current vertex to each of its tentative, adjacent neighbours

. from all tentative vertices - mark the one with shortest distance as
e permanent
e make it the current vertex

. repeat from 3 until all vertices are marked permanent

EC.)

G(_.0) 4

1) start at source node A
flag as permanent

G(6,A) H.-)

2) re-label adjacent nodes to A with shortest path (from A)
make shortest (B) permanent, current.

B(2,A)

C(9,B)

G(6.A) HC-)

3) re-label adjacent nodes to B with shortest path (add own SP)
don't label A - it's already permanent

‘ 7

2
E(4,B)

>.

G(6,A) 4

4) re-label Gto ... 7and Fto ... ?
new current is?

C(9,B)

F(_,_)

C(9,B)

7
2 3
3
5 F(6,E)
A D(__)
E(4,B)
6 2
1 2
4 H(9,G)

G(5,E)

5) re-label H. what is the new current?
we have {9, 6, 9, inf} to choose from

B(2,A)

@

2

2

6
]

2
A
E(4,B)

G(5.E) 4

6) we need to recalculate H
H is the new current

C(9,B)

3
3

\ F(6,E)
o

2
2

H(8,F)

2

6

1

/) new nodeis ... 7

G(5,E)

C(9,B)

3

5 F(6,E)
o0 @ -~
E(4,B)

2

/ H(8,G)

B(2,A)

.
2
2
5 F(6,E)
A D(10,H)
E(4,B)
6 2
1 2
4 H(8,G)

G(5,E)

8) mark last node as permanent
done!
we now have the shortest path to any node from A

Code for Dijkstra

* decide how to represent a vertex and edges
* adjacency list?
* sets?
* does this graph have a predictable structure?

* grids / checker board - edges are implied

Graph as a Grid

...

1.414 1 sgrt(171 + 1%1) |
1 start 1
1.414 obstacle 1.414

cost=4

...

Grid Implementation

2d array or sparse matrix?

each element in array holds cost

easy to look up cost of neighbours

e grid[current_row + 1][current_col]}

e don't go off the edge (indices < 0 or >= max)

often used to simplity representation of complex problem

e solve the simple problem

