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Dijkstra's Algorithm

~1959 - Edsger Dijkstra
e a founder of computer science as an academic field
e many contributions
find the shortest path through a weighted network (graph)

fastest known graph search (asymptotically)

e original - O(V2) -V Is vertices

* 1984 - using a Fibonacci Heap - O(E + V log V) - E is edges
each node updated shortest known distance info

has some similarities to breadth-first search



. label each vertex

The A\gorithm
. tentative (white circles) ‘\ 3‘ Y

» distance infinity

. mark start vertex as ‘ / ‘ /

- permanent (black circles)

* make it the current vertex (arrow)

. calculate distance from current vertex to each of its tentative, adjacent neighbours

. from all tentative vertices - mark the one with shortest distance as
e permanent
e make it the current vertex

. repeat from 3 until all vertices are marked permanent
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1) start at source node A
flag as permanent
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2) re-label adjacent nodes to A with shortest path (from A)
make shortest (B) permanent, current.
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3) re-label adjacent nodes to B with shortest path (add own SP)
don't label A - it's already permanent
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4) re-label Gto ... 7and Fto ... ?
new current is?
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5) re-label H. what is the new current?
we have {9, 6, 9, inf} to choose from
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6) we need to recalculate H
H is the new current
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8) mark last node as permanent
done!
we now have the shortest path to any node from A




Code for Dijkstra

* decide how to represent a vertex and edges
* adjacency list?
* sets?
* does this graph have a predictable structure?

* grids / checker board - edges are implied



Graph as a Grid
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Grid Implementation

2d array or sparse matrix?

each element in array holds cost

easy to look up cost of neighbours

e grid[current_row + 1][current_col]}

e don't go off the edge (indices < 0 or >= max)

often used to simplity representation of complex problem

e solve the simple problem



